Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.30.22282831

ABSTRACT

Post-COVID-19 conditions, also known as long COVID, has significantly impacted the lives of many individuals, but the risk factors for this condition are poorly understood. In this study, we performed a retrospective EHR analysis of 89,843 individuals at a multi-state health system in the United States with PCR-confirmed COVID-19, including 1,086 patients diagnosed with long COVID and 1,086 matched controls not diagnosed with long COVID. For these two cohorts, we evaluated a wide range of clinical covariates, including laboratory tests, medication orders, phenotypes recorded in the clinical notes, and outcomes. We found that chronic pulmonary disease (CPD) was significantly more common as a pre-existing condition for the long COVID cohort than the control cohort (odds ratio: 1.9, 95% CI: [1.5, 2.6]). Additionally, long-COVID patients were more likely to have a history of migraine (odds ratio: 2.2, 95% CI: [1.6, 3.1]) and fibromyalgia (odds ratio: 2.3, 95% CI: [1.3, 3.8]). During the acute infection phase, the following lab measurements were abnormal in the long COVID cohort: high triglycerides (meanlongCOVID: 278.5 mg/dL vs. meancontrol: 141.4 mg/dL), low HDL cholesterol levels (meanlongCOVID: 38.4 mg/dL vs. meancontrol: 52.5 mg/dL), and high neutrophil-lymphocyte ratio (meanlongCOVID: 10.7 vs. meancontrol: 7.2). The hospitalization rate during the acute infection phase was also higher in the long COVID cohort compared to the control cohort (ratelongCOVID: 5% vs. ratecontrol: 1%). Overall, this study suggests that the severity of acute infection and a history of CPD, migraine, CFS, or fibromyalgia may be risk factors for long COVID symptoms. Our findings motivate clinical studies to evaluate whether suppressing acute disease severity proactively, especially in patients at high risk, can reduce incidence of long COVID.


Subject(s)
Acute Disease , Lung Diseases , Migraine Disorders , Pulmonary Disease, Chronic Obstructive , Fibromyalgia , COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.03.22275976

ABSTRACT

The emergence of a heavily mutated SARS-CoV-2 variant (Omicron; B.1.1.529/BA.1/BA.2) and its rapid spread globally created public health alarms. Characterizing the mutational profile of Omicron is necessary to interpret its shared or distinctive clinical phenotypes with other SARS-CoV-2 variants. We compared the mutations of Omicron with prior variants of concern (Alpha, Beta, Gamma, Delta), variants of interest (Lambda, Mu, Eta, Iota and Kappa), and ~1500 SARS-CoV-2 lineages constituting ~5.8 million SARS-CoV-2 genomes. Omicrons Spike protein has 26 amino acid mutations (23 substitutions, two deletions and one insertion) that are distinct compared to other variants of concern. Whereas the substitution and deletion mutations have appeared in previous SARS-CoV-2 lineages, the insertion mutation (ins214EPE) has not been previously observed in any other SARS-CoV-2 lineage. Here, we discuss various mechanisms through which the nucleotide sequence encoding for ins214EPE could have been acquired and highlight the plausibility of template switching via either the human transcriptome or prior viral genomes. Analysis of homology of the inserted nucleotide sequence and flanking regions suggests that this template switching event could have involved the genomes of SARS-CoV-2 variants (e.g. B.1.1 strain), other human coronaviruses that infect the same host cells as SARS-CoV-2 (e.g. HCoV-OC43 or HCoV-229E), or a human transcript expressed in a host cell that was infected by the Omicron precursor. Whether ins214EPE impacts the epidemiological or clinical properties of Omicron (e.g. transmissibility) warrants further investigation. There is also a need to understand whether human host cells are being exploited by SARS-CoV-2 as an Evolutionary Sandbox for inter-viral or host-virus genomic interplay to produce new SARS-CoV-2 variants.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.06.22271974

ABSTRACT

The COVID-19 pandemic has seen the persistent emergence of fitter Variants of Concern (VOCs) that have successfully out-competed circulating strains, but the determinants of viral fitness remain unknown. Here we define Distinctiveness of SARS-CoV-2 sequences based on a proteome-wide comparison with all prior sequences from the same geographical region. From the perspective of viral evolution, Distinctiveness captures regional herd exposure and has the advantage over the canonical concept of mutation, which relies foremost on the reference ancestral sequence that is invariant over time. By assessing the correlation between Distinctiveness and change in prevalence for all circulating lineages in each region when a new lineage is introduced, we find that the relative Distinctiveness of emergent SARS-CoV-2 lineages is associated with their competitive fitness (Pearson r = 0.67). Further, by assessing the Delta variant in India versus Brazil, we show that the same lineage can have different Distinctiveness-contributing positions in different geographical regions depending on the other variants that previously circulated in those regions. Finally, analysis of Omicron lineages in India and USA shows the BA.1 and BA.2 sub-lineages have comparable distinctiveness, suggesting that they may have similar levels of competitive fitness. Overall, our study proposes that augmenting the ongoing surveillance of highly mutated variants with real-time assessment of Distinctiveness can aid in achieving robust pandemic preparedness.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Seizures
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.02.22270324

ABSTRACT

BackgroundCase reports of patients infected with COVID-19 and influenza virus ("flurona") have raised questions around the prevalence and clinical significance of these reports. MethodsEpidemiological data from the HHS Protect Public Data Hub was analyzed to show trends in SARS-CoV-2 and influenza co-infection-related hospitalizations in the United States in relation to SARS-CoV-2 and influenza strain data from NCBI Virus and FluView. In addition, we retrospectively analyzed all cases of PCR-confirmed SARS-CoV-2 across the Mayo Clinic Enterprise from January 2020 to January 2022 and identified cases of influenza co-infections within two weeks of PCR-positive diagnosis date. Using a cohort from the Mayo Clinic with joint PCR testing data, we estimated the expected number of co-infection cases given the background prevalences of COVID-19 and influenza during the Wuhan (Original), Alpha, Delta, and Omicron waves of the pandemic. FindingsConsidering data from all states of the United States using HHS Protect Public Data Hub, hospitalizations due to influenza co-infection with SARS-CoV-2 were seen to be highest in January 2022 compared to all previous months during the COVID-19 pandemic. Among 171,639 SARS-CoV-2-positive cases analyzed at Mayo Clinic between January 2020 and January 2022, only 73 cases of influenza co-infection were observed. Identified coinfected patients were relatively young (mean age: 28.4 years), predominantly male, and had few comorbidities. During the Delta era (June 16, 2021 to December 13, 2021), there were 9 lab-confirmed co-infection cases observed compared to 13.9 expected cases (95% CI: [12.7, 15.2]), and during the Omicron era (December 14, 2021 to January 17, 2022), there were 54 lab-confirmed co-infection cases compared to 80.9 expected cases (95% CI: [76.6, 85.1]). ConclusionsReported co-infections of SARS-CoV-2 and influenza are rare. These co-infections have occurred throughout the COVID-19 pandemic and their prevalence can be explained by background rates of COVID-19 and influenza infection. Preliminary assessment of longitudinal EHR data suggests that most co-infections so far have been observed among relatively young and healthy patients. Further analysis is needed to assess the outcomes of "flurona" among subpopulations with risk factors for severe COVID-19 such as older age, obesity, and immunocompromised status. Significance StatementReports of COVID-19 and influenza co-infections ("flurona") have raised concern in recent months as both COVID-19 and influenza cases have increased to significant levels in the US. Here, we analyze trends in co-infection cases over the course of the pandemic to show that these co-infection cases are expected given the background prevalences of COVID-19 and influenza independently. In addition, from an initial analysis of these co-infection cases which have been observed at the Mayo Clinic, we find that these co-infection cases are extremely rare and have mostly been observed in relatively young, healthy patients.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Obesity
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268315

ABSTRACT

Highly transmissible or immuno-evasive SARS-CoV-2 variants have intermittently emerged and outcompeted previously circulating strains, resulting in repeated COVID-19 surges, reinfections, and breakthrough infections in vaccinated individuals. With over 5 million SARS-CoV-2 genomes sequenced globally over the last 2 years, there is unprecedented data to decipher how competitive viral evolution results in the emergence of fitter SARS-CoV-2 variants. Much attention has been directed to studying how specific mutations in the Spike protein impact its binding to the ACE2 receptor or viral neutralization by antibodies, but there is limited knowledge of a genomic signature that is shared primarily by the sequential dominant variants. Here we introduce a methodology to quantify the genome-wide distinctiveness of polynucleotide fragments of various lengths (3-to 240-mers) that constitute SARS-CoV-2 sequences (freely available at https://academia.nferx.com/GENI). Compared to standard phylogenetic distance metrics and overall mutational load, the quantification of distinctive 9-mer polynucleotides provides a higher resolution of separation between VOCs (Reference = 89, IQR: 65-108; Alpha = 166, IQR: 150-182; Beta 130, IQR: 113-147; Gamma = 165, IQR: 152-180; Delta = 234, IQR: 216-253; and Omicron = 294, IQR: 287-315). Omicrons exceptionally high genomic distinctiveness may confer a competitive advantage over both prior VOCs (including Delta) and the recently emerged and highly mutated B.1.640.2 (IHU) lineage. Expanding on this analysis, evaluation of genomic distinctiveness weighted by intra-lineage 9-mer conservation for 1,363 lineages annotated in GISAID highlights that genomic distinctiveness has increased over time (R2=0.37) and that VOCs score significantly higher than contemporary non-VOC lineages, with Omicron among the most distinctive lineages observed till date. This study demonstrates the value of characterizing new SARS-CoV-2 variants by their genome-wide polynucleotide distinctiveness and emphasizes the need to go beyond a narrow set of mutations at known functionally or antigenically salient sites on the Spike protein. The consistently higher distinctiveness of each emerging VOC compared to prior VOCs suggests that real-time monitoring of genomic distinctiveness would aid in more rapid assessment of viral fitness.


Subject(s)
Breakthrough Pain , Virus Diseases , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.23.469709

ABSTRACT

Acute cardiac injury has been observed in a subset of COVID-19 patients, but the molecular basis for this clinical phenotype is unknown. It has been hypothesized that molecular mimicry may play a role in triggering an autoimmune inflammatory reaction in some individuals after SARS-CoV-2 infection. Here we investigate if linear peptides contained in proteins that are primarily expressed in the heart also occur in the SARS-CoV-2 proteome. Specifically, we compared the library of 136,704 8-mer peptides from 144 human proteins (including splicing variants) to 9,926 8-mers from all 17 viral proteins in the reference SARS-CoV-2 proteome. No 8-mers were exactly identical between the reference human proteome and the reference SARS-CoV-2 proteome. However, there were 45 8-mers that differed by only one amino acid when compared to the reference SARS-CoV-2 proteome. Interestingly, analysis of protein-coding mutations from 141,456 individuals showed that one of these 8-mers from the SARS-CoV-2 Replicase polyprotein 1a/1ab (KIALKGGK) is identical to a MYH6 peptide encoded by the c.5410C>A (Q1804K) genetic variation, which has been observed at low prevalence in Africans/African Americans (0.08%), East Asians (0.3%), South Asians (0.06%) and Latino/Admixed Americans (0.003%). Furthermore, analysis of 4.85 million SARS-CoV-2 genomes from over 200 countries shows that viral evolution has already resulted in 20 additional 8-mer peptides that are identical to human heart-enriched proteins encoded by reference sequences or genetic variants. Whether such mimicry contributes to cardiac inflammation during or after COVID-19 illness warrants further experimental evaluation. We suggest that SARS-CoV-2 variants harboring peptides identical to human cardiac proteins should be investigated as 'viral variants of cardiac interest'.


Subject(s)
COVID-19 , Heart Diseases , Inflammation
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.05.21265961

ABSTRACT

Recent reports on waning of COVID-19 vaccine induced immunity have led to the approval and roll-out of additional dose and booster vaccinations. At risk individuals are receiving additional vaccine dose(s), in addition to the regimen that was tested in clinical trials. The risks and the adverse event profiles associated with these additional vaccine doses are currently not well understood. Here, we performed a retrospective study analyzing vaccine-associated adverse events using electronic health records (EHRs) of individuals that have received three doses of mRNA-based COVID-19 vaccines (n = 47,999). By comparing symptoms reported in 2-week time periods after each vaccine dose and in a 2-week period before the 1st vaccine dose, we assessed the risk associated with 3rd dose vaccination, for both BNT162b2 and mRNA-1273. Reporting of severe adverse events remained low after the 3rd vaccine dose, with rates of pericarditis (0.01%, 0%-0.02% 95% CI), anaphylaxis (0.00%, 0%-0.01% 95% CI), myocarditis (0.00%, 0%-0.01% 95% CI), and cerebral venous sinus thrombosis (no cases), consistent with earlier studies. Significantly more individuals (p-value < 0.05) report low-severity adverse events after their 3rd dose compared with after their 2nd dose, including fatigue (4.92% after 3rd dose vs 3.47% after 2nd dose), lymphadenopathy (2.89% vs 2.07%), nausea (2.62% vs 2.04%), headache (2.47% vs 2.07%), arthralgia (2.12% vs 1.70%), myalgia (1.99% vs 1.63%), diarrhea (1.70% vs 1.24%), fever (1.11% vs 0.81%), vomiting (1.10% vs 0.80%), and chills (0.47% vs 0.36%). Our results show that although 3rd dose vaccination against SARS-CoV-2 infection led to increased reporting of low-severity adverse events, risk of severe adverse events remained comparable to the standard 2-dose regime. This study provides support for the safety of 3rd vaccination doses of individuals that are at high-risk of severe COVID-19 and breakthrough infection.


Subject(s)
Pericarditis , Headache , Myalgia , Nausea , Fever , Sinus Thrombosis, Intracranial , Arthralgia , Myocarditis , Breakthrough Pain , Vomiting , Lymphatic Diseases , COVID-19 , Fatigue , Diarrhea
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.23.21257670

ABSTRACT

BackgroundClinical data to support the use of bamlanivimab for the treatment of outpatients with mild to moderate coronavirus disease-19 (COVID-19) is needed. Methods2,335 patients who received single-dose bamlanivimab infusion between November 12, 2020 to February 17, 2021 were compared with a propensity-matched control of 2,335 untreated patients with mild to moderate COVID-19 at Mayo Clinic facilities across 4 states. The primary outcome was the rate of hospitalization at days 14, 21 and 28. ResultsThe median age of the population was 63; 47.3% of the bamlanivimab-treated cohort were [≥]65 years; 49.3% were female. High-risk characteristics included hypertension (54.2%), body mass index [≥]35 (32.4%), diabetes mellitus (26.5%), chronic lung disease (25.1%), malignancy (16.6%), and renal disease (14.5%). Patients who received bamlanivimab had lower all-cause hospitalization rates at days 14 (1.5% vs 3.5%; Odds Ratio [OR], 0.38), 21 (1.9% vs 3.9%; OR, 0.46), and 28 (2.5% vs 3.9%; OR, 0.61). Secondary exploratory outcomes included lower intensive care unit admission rates at days 14 (0.14% vs 1%; OR, 0.12), 21 (0.25% vs 1%; OR: 0.24) and 28 (0.56% vs 1.1%; OR: 0.52), and lower all-cause mortality at days 14 (0% vs 0.33%), 21 (0.05% vs 0.4%; OR,0.08) and 28 (0.11% vs 0.44%; OR, 0.01). Adverse events were uncommon with bamlanivimab, occurring in 19/2355, most commonly fever (n=6), nausea (n=5), and lightheadedness (n=3). ConclusionsAmong high-risk patients with mild to moderate COVID-19, treatment with bamlanivimab was associated with a statistically significant lower rate of hospitalization compared with usual care. FundingMayo Clinic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL